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Begg DP, Woods SC. Interactions between the central nervous
system and pancreatic islet secretions: a historical perspective. Adv
Physiol Educ 37: 53–60, 2013; doi:10.1152/advan.00167.2012.—The
endocrine pancreas is richly innervated with sympathetic and para-
sympathetic projections from the brain. In the mid-20th century, it
was established that �-adrenergic activation inhibits, whereas cholin-
ergic stimulation promotes, insulin secretion; this demonstrated the
importance of the sympathetic and parasympathetic systems in pan-
creatic endocrine function. It was later established that insulin injected
peripherally could act within the brain, leading to the discovery of
insulin and insulin receptors within the brain and the receptor-
mediated transport of insulin into the central nervous system from
endothelial cells. The insulin receptor within the central nervous
system is widely distributed, reflecting insulin’s diverse range of
actions, including acting as an adiposity signal to reduce food intake
and increase energy expenditure, regulation of systemic glucose
responses, altering sympathetic activity, and involvement in cognitive
function. As observed with central insulin administration, the pancre-
atic hormones glucagon, somatostatin, pancreatic polypeptide, and
amylin can each also reduce food intake. Pancreatic and also gut
hormones are released cephalically, in what is an important mecha-
nism to prepare the body for a meal and prevent excessive postpran-
dial hyperglycemia.

cephalic response; conditioning; insulin; islets; pancreatic innervation

THIS ARTICLE is a summary of a presentation given at the meeting
of the American Physiological Society in San Diego, CA, in 2012.
It was part of a symposium/refresher course on complications of
diabetes mellitus, and the specific topic was interactions between
the brain and endocrine pancreas.

The pancreatic islets of Langerhans were first identified in
the late 19th century (75). As described by Langerhans, the
islets are richly innervated (75), and it is now recognized that
this innervation includes sympathetic, parasympathetic, and
sensory nerves (1). Despite accounting for only 1–2% of the
pancreatic mass, islets are highly vascularized, receiving 10–
20% of pancreatic blood flow (14, 67, 79). Although most cells
found in islets are insulin- and amylin-secreting �-cells (61),
there are also significant numbers of �-cells (glucagon) and
�-cells (somatostatin) and small numbers of F cells (pancreatic
polypeptide) and ε-cells (ghrelin) (43, 61, 71, 74, 136). In this
review, after a brief description of endocrine secretions of the
islets, we describe the interactions between the central nervous
system (CNS) and pancreatic islets, focusing on cephalic
responses, conditioned hypoglycemia, insulin secretion, and
the roles of insulin in the CNS. While all pancreatic hormones

are discussed, the primary focus throughout this review is upon
insulin.

The Endocrine Pancreas and Insulin

Of the many hormones produced in and excreted by cells in the
islets, the first identified and best known is insulin. Two decades
after the discovery of the islets, Minkowski and von Mering (133)
reported that removal of the pancreas produced a diabetic pheno-
type, and it was subsequently reported that aqueous pancreatic
extracts produced moderate reductions in glycosuria (92). The
isolation of insulin from pancreatic islets was first performed by
Banting and Best (13) in 1922, and exogenous insulin soon
became the only effective treatment for insulin-deficient (type 1)
diabetes mellitus (123).

Insulin is a 51-amino acid peptide hormone cleaved by
proteases from preproinsulin and subsequently from proinsulin
in the secretory vesicles of �-cells (104, 105). Insulin’s best
known action is its ability to reduce circulating glucose by
activating glucose transporters on cell membranes, enabling
the uptake of glucose into most peripheral tissues, where the
glucose is used as a fuel or stored as glycogen (72). Insulin is
secreted from �-cells in response to increases of local glucose
levels, and both its basal and stimulated levels are directly
proportional to body fat, with leaner individuals having re-
duced insulin secretion relative to individuals with greater
adiposity (9, 10, 115, 142).

Shortly after the discovery of insulin, Kimball and Murlin (70)
determined that extracts of pancreatic tissue also contain a sub-
stance that produces a hyperglycemic response, and this hormone
was named glucagon. In the late 1960s and early 1970s, pancre-
atic polypeptide and somatostatin were described and identified in
the pancreas (25, 71). Pancreatic polypeptide is made in and
secreted from F cells, and somatostatin is made in and secreted
from D cells. Amylin was identified as a pancreatic hormone
cosecreted with insulin in the late 1980s (43, 136), and, more
recently, ghrelin-secreting epsilon cells have been described in
pancreatic islets (100).

Insulin and the CNS

Despite Langerhans’ early work describing the rich inner-
vation of the islets, there was little early interest in a possible
influence of the CNS over the secretion of insulin. Indeed, the
Endocrine Pancreas volume of the series on endocrinology
published by the American Physiological Society in 1972
contained no mention of a possible CNS influence (114). The
presumption that there was unlikely to be a significant brain-
islet interaction was primarily based on two premises. First, the
brain, unlike most other tissues, does not require insulin to take
up glucose (63), i.e., the brain was considered to be insulin
independent. Second, insulin was considered too large a mol-
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ecule to cross the blood-brain barrier (BBB) (91), deeming it
unlikely that the peptide could even enter the brain. The logic
was that since insulin was not believed to act on CNS cells and
that, in any case, it could not reach CNS cells, there could be
no meaningful brain-islet-insulin axis. As a consequence, the
prevailing theory leading up to the publication of the volume
on the pancreatic islets in 1972 was that insulin was a key
negative feedback molecule to prevent hyperglycemia; as glu-
cose levels reaching the islet increased, �-cells responded by
secreting insulin and consequently preventing further glucose
increases and ultimately returning glucose to basal values
(114). However, this model had no explanation as to why there
is such a rich innervation of the islets with no known functional
significance (151).

At the same time, evidence consistent with a functional role
of the nervous system in the pancreatic islets was accumulat-
ing. Porte demonstrated that local �-adrenergic stimulation
inhibits secretion (96), whereas �-adrenergic agonists stimu-
late insulin secretion (94, 95), strongly suggesting that insulin
secretion is under sympathetic control. Campfield and col-
leagues (29, 31) subsequently observed that insulin secretion is
stimulated by acetylcholine, indicating parasympathetic in-
volvement. Cholinergic stimulation of insulin release was, in
turn, decreased in the presence of epinephrine (30, 32), impli-
cating a complex neural control involving both parasympa-
thetic and sympathetic control over �-cells. These early studies
paved the way to the currently supported view that the auto-
nomic nervous system can have a powerful influence over the
secretion of insulin and indeed all pancreatic hormones.

A Neural Reflex Eliciting Insulin Release

In the late 1960s and early 1970s, using a Pavlovian behav-
ioral paradigm whereby an unconditioned stimulus is paired
with a neutral stimulus over the course of several trials result-
ing in the neutral stimulus becoming a conditioned stimulus,
one of us (S. C. Woods) found that rats could be conditioned
to secrete insulin and become hypoglycemic (137, 139, 141,
143, 146, 147). In training sessions, experimental rats received
a subcutaneous injection of insulin (the unconditioned stimu-
lus) in the presence of a novel stimulus (usually an odor, the
conditioned stimulus). Blood glucose decreased in response to
insulin (the unconditioned response), whereas it increased
slightly in control rats administered a placebo (saline) injection
subcutaneously in association with the odor. After several such
conditioning trials, a test day occurred in which all rats re-

ceived only saline injections plus the odor, and those that been
previously received insulin became hypoglycemic (Fig. 1).
Subsequent experiments revealed that the conditioned hypo-
glycemia required an intact vagus nerve (139), could be
blocked with the anti-cholinergic drug atropine (155), and was
secondary to conditioned secretion of pancreatic insulin (141).

There are several reviews of these early experiments on
conditioned hypoglycemia (81, 138, 144), and it is important to
note that the findings generated more questions than they
answered. For example, what is the neural circuit that normally
leads from the CNS to parasympathetic secretion of pancreatic
insulin? Does subcutaneously administered insulin somehow
(counterintuitively) trigger a reflex leading to endogenous
insulin secretion? Does some of the administered insulin actu-
ally get into the brain on conditioning trials? If so, does this
imply that brain cells can actually detect and respond to
changes of local insulin?

While the phenomenon of conditioned hypoglycemia has
been observed in numerous laboratories (e.g., Refs. 5, 45, 52,
53, 84, 120, and 146) and species (for reviews, see Refs. 4, 77,
and 144), including humans (48, 118), it should be noted that
these early conditioning experiments were not without contro-
versy. Using a purportedly identical protocol, Siegel (110, 111)
observed that rats developed a conditioned hyperglycemic
response, as opposed to a hypoglycemic response. This makes
teleological sense in that when a signal (the odor) occurs that
has always previously predicted that the animal was about to
receive an injection of exogenous insulin; if the rat learns
anything, it should learn to increase its blood glucose to
mitigate the inevitable hypoglycemia, i.e., the rat should learn
to counter the upcoming reduction of blood glucose. In fact,
when smaller, closer-to-physiological doses of insulin are ad-
ministered on the training days, rats do just that. They develop
conditioned hyperglycemia (54, 154).

On the other hand, there was evidence supporting the coun-
terintuitive position. Peripheral administration of glucose had
been previously used as the unconditioned stimulus in some
classical conditioning experiments, and a slight conditioned
hypoglycemia was developed relative to controls (90, 102).
The glucose administration on conditioning trials presumably
elicited endogenous insulin secretion, and subsequent experi-
ments later determined that a change of blood glucose on
conditioning trials is not a crucial component of the condition-
ing process; rather, during conditioning trials, the important
factor for the development of a conditioned hypoglycemic
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Fig. 1. A: the conditioned hypoglycemic response.
Saline injection in animals previously conditioned
with a series of insulin injections produced a transient
hypoglycemia relative to control animals injected
with saline on the conditioning trials. B: conditioned
insulin secretion. Animals conditioned with multiple
injections increasing plasma and brain insulin have a
fourfold increase of plasma insulin on a saline injec-
tion test trial. Graphs were redrawn from Woods et al.
(147) (A) and from Woods et al. (141) (B).
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response is the increase of insulin (137). Overall, the data
suggest that an increase of insulin (either exogenous or endog-
enously produced) rather than a decrease of blood glucose is
sufficient to produce conditioned hypoglycemia (and concom-
itant conditioned insulin secretion).

The implication, as well as the important point, from all of
these studies reporting conditioned insulin secretion and hypo-
glycemia was that a sudden increase of insulin triggered a
reflex reaction in which neurally elicited pancreatic insulin
secretion occurred. Such a reflex had in fact been reported in
dogs, but it only occurred when the administered insulin
actually gained direct access to the brain (38, 124, 125). Only
later was it recognized that when large doses of insulin are
administered systemically, some insulin actually penetrates the
BBB, i.e., after an intravenous administration of exogenous
insulin, the level of insulin in the blood rises rapidly and
glucose in both plasma and the cerebrospinal fluid (CSF)
decreases (152). A sudden increase of insulin in the CSF, in
and of itself, elicits a transient, neurally elicited increase of
pancreatic insulin secretion (36, 148). In summary, when
sufficient exogenous insulin is administered that some of it
enters the CNS, the insulin acts on brain circuits to trigger a
vagally mediated parasympathetic increase of insulin secretion
from the islets, and this reflexive response can be conditioned.

Subsequent experiments found insulin receptors on neurons
and other brain cells in many areas of the CNS. In fact, by the
mid 1980s, insulin receptors had been found to be abundant
and widely distributed throughout both the developing and
adult CNS (44, 62). The distributions of insulin and its receptor
in the brain have been extensively characterized by immuno-
histochemistry (16), autoradiography (130, 131), and in situ
hybridization of insulin receptor mRNA (83). High levels of
insulin receptors are found in the choroid plexus, olfactory
bulbs, and arcuate nucleus of the hypothalamus. The insulin
receptor is also abundant in many other regions, including the
cerebellum, cerebral cortex, hippocampus, and several hypo-
thalamic nuclei (15, 16, 82, 83, 130, 131).

Insulin and the BBB

Once insulin had been identified within the brain and CSF,
it was hypothesized that insulin enters the CSF from plasma via
the choroid plexus, subsequently passing through the ependy-
mal lining and acting at insulin receptors on nearby neurons

(149). This seemed a reasonable explanation given the dense
insulin binding sites in the choroid plexus and the observation
that numerous nuclei in the ventral hypothalamus are close to
the wall of the CSF-containing third ventricle and have a high
density of insulin receptors (15, 59, 60, 130, 132, 157). How-
ever, more mechanistic experiments assessing the dynamics of
insulin uptake into the CSF and the brain later determined that
rather than entering the CNS via the choroid plexus and CSF,
insulin is transported into the brain via an insulin receptor-
mediated, saturable pathway in brain capillary endothelial cells
(see Fig. 2) (17). Thus, the normal movement of insulin to the
CNS fits a three-compartment model (plasma to brain intersti-
tial fluid to CSF) (11, 12, 80, 106).

Cephalic Responses

Neurally elicited insulin secretion normally occurs at meal-
time, and this natural reflex is easily conditionable to cues that
reliably predict meal onset (155). These cues include food-
predicting odors or the time of day that meals normally occur.
These meal-related responses are called “cephalic” because
insulin is not secreted in response to a local change of glucose
or other nutrient in the pancreas but rather to a neural signal
emanating from the brain. The importance of cephalic insulin
to normal physiology is demonstrated by the observation that if
cephalic insulin is blocked or prevented, animals appear dia-
betic when they eat, experiencing abnormally high elevations
of blood glucose. The secretion of a small amount of insulin as
the meal begins thus enables individuals to consume large
caloric loads without becoming hyperglycemic, and in its
absence, only small meals are generally consumed (140). There
are many reviews of cephalic insulin and its importance (1, 23,
69, 99, 118, 119, 127, 128).

During meals, and especially during large meals, there are
large fluxes of nutrients into and then out of the gastrointestinal
system, into and out of the blood, and ultimately into tissues for
immediate use or storage. Cephalic responses enable the body
to prepare for these processes in advance and consequently to
allow them to proceed smoothly and with the least metabolic
perturbation (153). Importantly, many processes other than
insulin secretion are involved. Before anticipated meals, there
is also evidence for the cephalic secretion of other islet hor-
mones, including pancreatic polypeptide (126), amylin (76),
and glucagon (107). Gastrointestinal hormones are also se-
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Fig. 2. Transport of circulating insulin from the
blood into the central nervous system. A: cir-
culating insulin, which has been released into
the blood from �-cells in the pancreas, binds to
receptors on endothelial cells of the blood-brain
barrier (BBB). B: insulin is transported through
the endothelial cells via receptor-mediated
transcytosis. C: insulin is released into the brain
interstitial fluid, where it can then act on neu-
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creted cephalically before the actual onset of eating, including
ghrelin (46, 122), cholecystokinin (50), and glucagon-like
peptide 1 (129). The important point is that the CNS initiates
and coordinates a complex mix of premeal events that help the
individual adequately prepare for and deal with the caloric load
(see Fig. 3).

In summary, contrary to earlier beliefs, insulin is now recog-
nized to cross from the periphery to the brain via an insulin
receptor-mediated transport process through brain capillary endo-
thelial cells. Within the brain, insulin stimulates insulin receptors,
which are abundantly located in many areas of the CNS. The
widespread distribution of insulin and its receptors within the
CNS suggests that there are diverse actions of insulin in the brain,
likely influencing many behaviors in addition to those directly
related to energy homeostasis.

The Functions of Central Insulin

Once within the CNS, insulin has a diverse range of actions.
Central insulin alters food intake and energy expenditure (19,
106, 108) and systemic glucose responses to meals and fluc-
tuations of plasma glucose (51, 78, 113). Insulin in the brain is
also involved in reproductive function/development (28), he-
donic responses (49), and sympathetic activity (101, 134). A
particularly exciting topic at the present time concerns the
ability of insulin, acting on receptors in the hippocampus and
elsewhere in the CNS, to improve cognitive function (37, 116,
117). Most of these aspects of CNS insulin action are beyond
the scope of this review.

Insulin and the Regulation of Body Adiposity

Soon after a specific insulin assay became available, it was
determined that both basal insulin and insulin secreted in
response to a glucose load are directly correlated with body
weight, with insulin being elevated in individuals with greater
adiposity (9, 10). Because insulin levels in the blood increase
when humans (112) or animals (22) overeat and become fat, it
was proposed that because insulin is able to enter the CNS, it
may act as a negative feedback controller of adiposity (150).

The concept was simple, i.e., if an individual overeats and
gains weight, the elevated blood and consequently brain insulin
would provide a signal triggering corrective responses to eat
less and return weight to its former level. Conversely, if an
individual fasts or diets, the reduced brain insulin signaling
would trigger a reflex to eat more and regain weight. To test
this hypothesis, Woods et al. (145) infused insulin into the CSF
of baboons and observed a dose-dependent decrease of food
intake and body weight over a several-week period, and these
effects were reversed after the cessation of the infusions. Many
studies have confirmed the effects of central insulin adminis-
tration to reduce food intake and body weight, most commonly
in rodents (2, 3, 64, 85). Importantly, the anorexia and weight
loss are not secondary to aversion (35) or to decreased mobility
of animals after insulin infusion (33). Consistent with these
data, when the insulin signal in the CNS is reduced, by local
administration of antibodies to insulin, by genetically knocking
out insulin receptors on all CNS neurons, or by interfering with
the insulin receptor mRNA message locally in the hypothala-
mus, animals have increased food intake and body weight (28,
56, 85, 121).

Central insulin-induced hypophagia has been observed in
many species, including rats (2, 3, 21, 26, 42, 64, 93), baboons
(145), mice (27, 66), chicks (109), and sheep (55). Importantly,
humans also have reduced food intake after central insulin
administration. With the use of an intranasal insulin adminis-
tration technique to increase CSF insulin levels, a dose-depen-
dent reduction of food intake was observed in human volun-
teers (58), and daily treatment resulted in significant weight
loss after 6 wk (58). Followup experiments found that men
were more sensitive to the anorectic effects of insulin than
women (20). Similarly, in the rat, males are relatively more
sensitive to the anorectic effects of central insulin, whereas
females are relatively more sensitive to the anorectic effect of
central leptin (40, 42). Consistent with this, females have
higher circulating leptin and lower circulating insulin than
comparably obese males (40). This appears to be related to fat
distribution, as females generally have more subcutaneous fat,
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whereas males tend to have a higher proportion of visceral fat
(24, 88), and leptin is secreted disproportionately more from
subcutaneous fat (47, 86), whereas insulin secretion is more
proportional to visceral fat (98). Sex differences observed in
hypophagia after the central administration of insulin are due to
the actions of estrogen in the hypothalamus, i.e., estrogen
inhibits insulin effects on food intake while potentiating the
effects of leptin (87). It should be noted that central insulin
administration does not necessarily lead to a negative energy
balance; rather, the magnitude of the brain insulin signal
reduces the amount of body adiposity that is homeostatically
maintained (i.e., central insulin infusion will not obligatorily
reduce food intake) (33). These examples point to some of the
complexities involved in the “regulation” of food intake and
energy balance.

Central insulin administration is ineffective at reducing food
intake in obese Zucker rats lacking functional leptin receptors
(64), and the response to central insulin infusion is also
reduced in animals made obese using diet-induced obesity
models (7, 34, 39, 41) as well as in obese humans (57). This
indicates that obesity results in insulin resistance in the CNS as
well as in peripheral tissues. The transport of insulin through
the BBB is also compromised in diet-induced obesity (18, 65),
and it is possible that this effect is secondary to the leptin
resistance that occurs with weight gain (73), given that there is
some evidence indicating that the hypophagic effects of insulin
require leptin functioning (64, 156). When insulin and leptin
are both administered centrally, most doses elicit additive
leptin-insulin hypophagic effects. However, at some doses, the
reduction of food intake is significantly less than the sum of the
individual effects (3). The interactions between insulin and
leptin resistance in obesity remain an important area for future
research, and a key question that remains is whether endoge-
nous insulin has the same hypophagic action as exogenous
insulin.

Other Pancreatic Hormones and the CNS

The hormones produced in the pancreas are all capable of
being neurally stimulated, with insulin, amylin, glucagon, and
pancreatic polypeptide all released during cholinergic stimula-
tion (29, 68, 89), whereas somatostatin secretion is controlled
adrenergically (103). Although they have different and some-
times opposite effects on blood glucose and other parameters,
each of the islet hormones reduces food intake. Insulin, pan-
creatic polypeptide, and somatostatin all act at the hypothala-
mus to decrease food intake (6, 8, 145), whereas amylin acts at
the area postrema in the hindbrain (97) and glucagon acts on
the vagal afferent neurons (135). As stated above, pancreatic
hormones are released cephalically, in what is an important
mechanism for the body to prepare for a meal and prevent
diabetes-like symptoms.

Summary

It is now well established that there are complex interactions
between the brain and pancreatic islets. Cells within the islets
are stimulated by CNS parasympathetic or sympathetic outputs
to alter the secretion of peptide hormones, including insulin.
Insulin acts within the brain to reduce the amount of body
adiposity that is homeostatically maintained, generally reduc-
ing food intake and increasing energy expenditure. All other

major islet hormones, including pancreatic polypeptide, soma-
tostatin, amylin, and glucagon, reduce food intake, indicating
mechanisms of feedback to the CNS from the endocrine
pancreas.
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